Spatial localization of auditory stimuli in human auditory cortex is based on both head-independent and head-centered coordinate systems.

نویسندگان

  • Eitan Schechtman
  • Talia Shrem
  • Leon Y Deouell
چکیده

In humans, whose ears are fixed on the head, auditory stimuli are initially registered in space relative to the head. Eventually, locations of sound sources need to be encoded also relative to the body, or in absolute allocentric space, to allow orientation toward the sounds sources and consequent action. We can therefore distinguish between two spatial representation systems: a basic head-centered coordinate system and a more complex head-independent system. In an ERP experiment, we attempted to reveal which of these two coordinate systems is represented in the human auditory cortex. We dissociated the two systems using the mismatch negativity (MMN), a well studied EEG effect evoked by acoustic deviations. Contrary to previous findings suggesting that only primary head-related information is present at this early stage of processing, we observed significant MMN effects for both head-independent and head-centered deviant stimuli. Our findings thus reveal that both primary head-related and secondary body- or world-related reference frames are represented at this stage of auditory processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Egocentric and allocentric representations in auditory cortex

A key function of the brain is to provide a stable representation of an object's location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subj...

متن کامل

Processing of auditory location changes after horizontal head rotation.

Under natural conditions, our sound localization capabilities enable us to move constantly while keeping a stable representation of our auditory environment. However, since most auditory studies focus on head-restrained conditions, it is still unclear whether neurophysiological markers of auditory spatial processing reflect representation in a head-centered or an allocentric coordinate system. ...

متن کامل

Neuromagnetic measurement of sound location processing in the human brain

In their natural auditory environment, humans are faced with a highly complex array of stimulus sources of varying location, frequency, and intensity, usually overlapping in time. This threedimensional auditory space is to be analysed and represented by the human brain for the organism to function adequately. Slightly simplifying, the human auditory cortex can be described as a twodimensional a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 39  شماره 

صفحات  -

تاریخ انتشار 2012